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Anyonic Variables and the Quantum Hyperplane
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Anyonic variables are introduced. They are shown to give a representation of
the quantum hyperplane.

1. INTRODUCTION

The idea of grading (Van Oystean and Nastassecu, 1982) is well known
in algebra. There, a Z, grading of a ring R is a collection of subrings R; such
that R = % R; and R,R; C R,;.

An analogous idea can be followed for variables. Commuting variables
(real or complex) correspond to Z; grading, while anticommuting variables
(Taylor and Ferrara, 1982) correspond to Z, grading. Recently we have defined
semionic variables (Ahmed et al., 1993), which correspond to Z, grading. In
this note we generalize our previous results to variables with Z, grading.
These variables are called anyonic variables. These variables are introduced
here and shown to form a representation of the quantum hyperplane.

2. ANYONIC VARIABLES

The variables 8;, 8,, . .. are said to be 7/n anyonic variables if

0,0, = exp[i % Stk — 1)] 0,0, @.1)
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where
1, k>1
Sk—D=4-1, k<l 2.2)
0, k=

It is straightforward to see that
Sk—D+SU—-—k =0 (2.3)

Hence the definition (2.1) is consistent. Bosonic (commuting) variables corre-
spond to taking the limit n — oo, while fermionic (anticommuting) variables
correspond to n = 1.

Differentiation and integration of anyonic variables are defined as

follows:
00 a(8,)?
ol _ 0, —=35, )
a9, 39, 00,

= (1 + elSk-yg.5l  (2.4)

With these definitions, it follows that

aOY _ 1 — e
09;

J

39(8,)7! 2.5)

1 — ei'n'/n

Notice that when p = 2n the right-hand-side of this last equation identically
vanishes. Hence we impose, for any m/n anyonic variables, the following
condition:

;" =0 (2.6)

For anticommuting variables, n = 1 and we regain the familiar result (6;)
= 0.

Translation invariance and equation (2.6) suggest the following definition
for integration over anyonic variables:

J (Bj)z""l dB, = 0y (27)

and the integration of any other power of 9; is zero. For n = 1 the familiar
Brezin integral (Taylor and Ferrara, 1982) is regained.

3. THE QUANTUM HYPERPLANE

The quantum hyperplane is defined in Manin (1989) and Faddeev et al.
(1988) as the set of coordinates x;, [ = 1, 2, ..., such that

XX = qx;x;, 1<j 3.1
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The corresponding differential dx; satisfies

On the other hand, the noncommutative differential calculus advocated
in Wess and Zumino (1990) and Zumino (1991) states that in general the
coordinates x; obey the commutation relation

o = XX — B,'ﬁf,.xkx, =0 (3.3)

for some tensor Bf‘jl These commutation relations lead to the consistency
condition

am r; j =0 (3.4)
Furthermore, the differentials dx; in general satisfy
x, dx; = Cy dx;. x, (3.5)

A straightforward comparison shows that for anyonic variables of type
7i/n we have

q= exp[iI S{ —j)]
n

LT .
By = exp[l —S(p —;)] 3;8, (3.6)

The consistency condition (3.4) is satisfied for anyonic variables due to the
property (2.3). The tensor Cf,k is given by

iy = 3% exp[i = S(p —j)} 3.7

The R-matrix for the quantum group GL,(n) is (Manin, 1989; Faddeev
et al., 1988; Wess and Zumino, 1990; Zumino, 1991)

RS, = 8i8i[1 + (g — 3] + (q - 5)8’;8;'6(; - (8
where

o) = {(1) iz 8 3.9)
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The matrix R satisfies the Yang—Baxter relation
RiyRu Rz = RRipRys (3.10)

where the tensor product notation has been used.

Thus we have shown that anyonic variables form a representation of
the quantum hyperplane. An interesting correspondence between particles
and variables is as follows: Commuting variables correspond to bosons.
Anticommuting variables correspond to fermions. Anyonic variables corre-
spond to particles with fractional states of the type known in the fractional
Hall effect (Laughlin, 1988) and superconductivity (Fradkin, 1991).
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